高频高压变压器分布电容的分析与处理 第2页

  3 LCC主电路原理介绍

  该电源输入工频220V电源,输出直流电压0~10000V,输出最大功率500W。主电路(图2)由两级变换电路组成,前级为Buck降压电路,用来实现稳压目的。后级为LCC谐振电路,为开关器件提供零电压开通条件,变压器副边采用高压硅堆整流,输出为10kV。

  ?

  通过对LCC谐振电路的详细分析,由电路工作于主模式的状态轨迹图,推导出其稳态时的解析表达式,根据此解析表达式画出LCC谐振电路的负载曲线。最后,根据此曲线设计了实验参数:

  , , 。设计电路稳态时,工作于如下状态:开关频率为20KHz,T=50μs,输出功率500W,输出电压10kV。高压变压器变比为1:100,则变压器原边的电压为100V,Io为5A。

  4 实验波形及结果分析

  实验中,负载为200k电阻,输出负载电压为10kV。图3(a)中,通道1为开关管上的电压波形VCE=2VS,大约160V,通道2为谐振电感 电流波形,峰值大约20A。图3(b)为谐振电容C2上的电压波形。图3(c)为输出负载部分电压,等于总电压的二十分之一。实测效率约为90%,这主要 由于BUCK调压电路开关损耗较大。

  ?

  (c)输出负载部分电压论文网http://www.lwfree.com/  

  图3 实验波形

  从实验波形上看,基本与理论分析一致,输出电压也能够达到10000V,系统能够按设定工作。但是,在持续工作一段时间后发现谐振电感L发热严重, 主谐振电流开始不稳定,噪声加大,系统不能正常工作。由于在一段时间内系统能够正常工作,说明电路原理没有问题。又鉴于故障发生总是在半小时左右,初步断 定故障是由L发热引起。由图3a可见流过L的主谐振电流峰值为20A,这比设计值10A大了一倍。输出一万伏直流电压加在200K电阻负载上消耗500W 功率没有问题,变压器副边高压滤波整流模块亦没有发热现象。测量变压器原边输入电流峰值为19A左右,远超过设计值。说明问题出在变压器上。对该 1:100变压器进行空载试验,输入20KHz交流,发现空载电流非常大,且电流超前电压90度,似乎该变压器带了一个电容负载。

  5 分布电容的测量及仿真验证

  考虑到前述的高频变压器绕组分布参数模型,建立图4所示的高频变压器模型。

  (a)高频变压器模型

  (b)高频变压器简化模型

  图4 高频变压器分布参数模型及简化

  其中L1,L2分别为原边和副边的漏电感;C1为原边绕组等效分布电容,C2为副边绕组等效分布电容;R1,R2分别为原边和副边绕组的电阻;Tx 为没有分布参数的理想铁氧体铁心变压器。考虑到副边电流很小,R2,L2可忽略不计。而原边只有几匝,R1亦忽略不计。再将C2折算到原边后得到图4a的 简化模型(图4b)。考虑到副边匝数是原边匝数的100倍,且绕制工艺一样,可以得到 。将C2折算至原边后,有:

上一页  [1] [2] [3] [4] 下一页

Copyright © 2007-2012 www.chuibin.com 六维论文网 版权所有