sprinkled  space  [8 ].  The  parameter A  also  depends  on  the  aerodynamic  factors  that  influence  the  operating
efficiency  of  the  tower  [8].  As  is  seen  from  Eqs.  (4)  and  (5),  the  quantity  ATnm takes  into  account  the
thermodynamic factors  that  influence the  evaporative cooling efficiency of water.
Experimental  Facility.  The  laboratory model  of  an  evaporative  cooling  tower  is  made  of  a  transparent
organic  glass.  It  has  the  height H  =  0.5 m,  the  diameter of  the  bottom D  =  0.5 m,  and  the  height  of windows  for
entry of air  h = 0.04 m. Water  distributor 5  is  located  above water-collecting tank  7  at  a  height  of 0.19 m  (Fig.  1).
Hot water was  fed  to  the water  distributor  through  a  closed  loop with  the  aid  of  the  pump  of  thermostat
12. The water  flow rate was  controlled by  rotameter  14. The hot water  from the water distributor entered  the  tank
and  then was  again  pumped  into  the  thermostat.  The  external wind  loading was  initiated  by  two nozzles  1 and  15
of a  simplified wind  tunnel with  an  open  test  section.  The  horizontal wind  flow was  stratified along  the  height  by
selecting the mode of operation of each of the nozzles after preliminary calibration  for the value of the wind speed.
The  ratio  of  the wind  speeds  in  the  upper  and  lower parts  was  established  as  2:1.
To visualize  the  flow pattern  inside  the model, we used  the  "laser knife" method  [9 ]  (elements 2,  3).  The
observed flow structures containing water droplets of about micron diameter were photographed with video camera
13  in  the  real  time  scale.
Metal nets  11 above the water distributor made it possible to regulate the aerodynamic resistance of the cooling
tower.  It has  a  rather complex nature  [8 ] and  is associated with  different physical phenomena occurring in  the  tower.
The  facility developed  differs  from  the  standard  actual  cooling  tower  by  the  presence,  in  its  upper  and
lower parts,  of  rotating plates  4  and  6  of  length 0.04 m  that  swirl  the  vapor-air  flow inside  the model  due  to  the
tangential pulse of cold air  ejected  into  the  cooling tower.
The  temperature  field  inside  the model was measured  by  thermocouples  8  located  at  four  sections  along
the  height.  The  orientation  and  location  of  the  thermocouples made  it  possible  to  record  the  temperature  of  the
vapor-air mixture along and across  the direction of the wind stream flowing around  the model.  Inpidual  thermal
probes  controlled  the  temperature  of  the  entering  and  cooled  water.  The  readings  of  the  thermocouples were
上一篇:提高级进模性能英文文献和中文翻译
下一篇:管壳式换热器设计英文文献和中文翻译

大型承载能力起重机船的...

柴油机大涡中小火焰模型...

概率风能模型的发电系统...

智能城市物流云计算模型英文文献和中文翻译

悬架系统的多体动力学模...

弯曲处的残余应力模型英文文献和中文翻译

Java技术的Web应用设计模型...

提高教育质量,构建大學生...

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...