In experiments we used a model of a cooling tower that had the same geometric proportions as  in  [6 ]. From
the viewpoint of physical criteria,  there was  similarity in  the  Prandtl  number,  since  in  both  cases we used water
for  the  cooling. The Rayteigh number  for  the  laboratory  experiments  lay within  the  range  from  108  to  109. For
actual cooling towers  100 m  in height Ra  -~  1015. Here the following should be noted: for Rayleigh numbers obtained
both  in  a  laboratory installation  and  in  an  actual  cooling tower,  the  flow inside  the  tower is  turbulent  in  character.
This  permits  one  to  extend  the  results  of laboratory modeling  to  actual objects.
Since  under  actual  conditions  cooling  towers  are  exposed  to  the  effect of wind  loading,  then  in  order  to
simulate  the  interaction of an  ascending free convective  flow inside a  tower with  an  external wind we  introduce one
more  similarity parameter
S  =  v/w,  (3)
where  v  is  the  speed  of  the  wind;  w  =  X/2flgATH  is  the  calculated  vertical  velocity  of  free  convective  flow.  In
experiments  the  parameter S  varied within  the  range  from 0  to 2.
The problem of the selection of similarity numbers  to simulate the processes of evaporative cooling in  towers
is much more complex.  In  experimental investigations use was made  of water  and  air as  heat  agents,  as  is  done  in
the majority of actual  towers. Therefore, there was  similarity in  all of the  thermophysical parameters.  To  take  into
account the integral effect of thermodynamic and aerodynamic factors on the process of evaporative cooling of water,
we  shall make  use of certain  results  of  [7 ].
It  is  shown  in  that work  that  the  drop  in  the  temperature of water  in  a  tower ATw depends  on  the  limiting
drop  in  the  temperature  of cooling ATIi  m and  on  the  relationship  between  the mean  mass  flow  rates  of water Qw
and  air Qa  through  the  cross  section of the  tower  in  the  following way:
(Qw)  (4) AT  w=ATlim/  1 +A~  ,
where ATw = TO--  Tf.  Here Ty  is  the  temperature of water  in  the  tank,  T  O  is  the  temperature of water  entering  the
water  distributor;  ATIi  m =  Tlim  -  T  0,  where  Tit  m  is  the  limiting  cooling  temperature  [1 ]  determined  from  the
condition
Ps  (Zlim) = Ps  (Za) ~, (5)
whereps(T)  is  the density of saturated vapors at the given temperature; ~p  is the relative humidity of the surrounding
air.
The  parameter A  in  Eq.  (4)  can  be  determined only  experimentally.  It  is  a  slowly varying  function  that
depends  on  the  character of water  spraying,  the  design  of the water-distributing  system,  and  the  elements  in  the
上一篇:提高级进模性能英文文献和中文翻译
下一篇:管壳式换热器设计英文文献和中文翻译

大型承载能力起重机船的...

柴油机大涡中小火焰模型...

概率风能模型的发电系统...

智能城市物流云计算模型英文文献和中文翻译

悬架系统的多体动力学模...

弯曲处的残余应力模型英文文献和中文翻译

Java技术的Web应用设计模型...

提高教育质量,构建大學生...

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...