模数转换技术及其发展 第3页
出进行D/A转换,恢复成模拟电压。第二步是进一步细化量化。把原输入电压与D/A 转换器输出的模拟电压相减,其差值再进行低4位的A/D转换。然后将上述两级A/D转换器的数字输出并联后作为总的输出。这样,在转换速度上作出了一点牺牲,但解决了分辨率提高和元件数目刷增的矛盾。
现代高速ADC与普通ADC相比的主要特点是:单电源性能;将基准电源、采样保持器和增益放大器集成在一块芯片上,集成度高;采用标准的0.6μm的CMOS工艺开发各种价格的低功耗ADC。
1.2 逐次逼近型
逐次逼近型ADC是应用非常广泛的模/数转换方法,它由比较器、D/A转换器、比较寄存器SAR、时钟发生器以及控制逻辑电路组成,将采样输入信号与已知电压不断进行比较,然后转换成二进制数。其原理图如图3所示,首先将DAC的最高有效位MSB保存到SAR,接着将该值对应的电压与输入电压进行比较。比较器输出被反馈到DAC,并在一次比较前对其进行修正。在逻辑控制电路和时钟驱动下,SAR不断进行比较和移位操作,直到完成LSB的转换,此时所产生的 DAC输出逼近输入电压的±1/2LSB。当每一位都确定后,转换结果被锁存到SAR并作为ADC输出。这一类型ADC的优点:高速,采样速率可达 1MSPS;与其它ADC相比,功耗相当低;在分辨率低于12位时,价格较低。缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。
1.3 积分型ADC
积分型ADC又称为双斜率或多斜率ADC,是应用比较广泛的一类转换器。它的基本原理是通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。其原理图如图4所示。其工作分为两个阶段,第一阶段为采样期;第二阶段为比较期。通过两次积分和计数器的计数可以得到模拟信号的数字值D=2nV1/VR,其中n为计数器的位数,V1为输入电压在固定时间间隔内的平均值。若图片无法显示请联系QQ3249114,模数转换技术及其发展 第3页系统免费,转发请注明源于www.751com.cn
积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的D表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。若把积分器定时积分的时间取为工频信号的整数倍,可把由工频噪声引起的误差减小到最小,从而有效地抑制电网的工频干扰。这类ADC主要应用于低速、精密测量等领域,如数字电压表。其优点是:分辨率高,可达22位;功耗低、成本低。缺点是:转换速率低,转换速率在12位时为100~300SPS。