摘要建立对一个被控对象的控制,需要了解被控对象的数学模型。控制的系统分为线性系统与非线性系统,对于线性系统,目前已经建立了十分完善的理论;而在非线性系统的控制上,从以前到现在一直不断地有新的理论提出。分形系统是非线性系统的一种,广泛存在于各种自然现象中,对分形系统进行研究,能帮助我们对于分形系统进行控制。系统的本文介绍了分形系统的数学原理,对于分形文度的计算作了说明,阐释了分形集的基本性质以及区别与其他集合的特性。说明了分形集在程序上的几种算法,并且使用Matlab软件绘制了科赫曲线、谢尔宾斯基三角形、魏尔斯特拉斯函数以及分形树的图案。最后对分形集中比较重要的两种集合Mandelbrot集与Julia集作了一定探究,说明了Mandelbrot集的图形细节的一些性质与Julia集的形状与参数的部分关系。31394 毕业论文关键词分形理论,分形算法,非线性系统
Title Study of Fractal system
Abstract Mathematical model is necessary when we have to establish control of an object that expected to be controlled. Control system can be pided into two sorts: linear system and non-linear system. Nowadays, we have already constructed a thorough therapy for linear system. While new therapies for non-linear system have been continually putting forward. Fractal system is one part of non-linear system, which widely exists in nature phenomena. Through the researching of fractal system, we get easier to make control of fractal phenomena. This article introduces the mathematical principles of fractal system and explain the calculation of fractal dimensions. It states the fundamental characters of fractal sets which differ from other sets and tells some algorithms for fractal systems. MATLAB is used here to plot the images of Koch Curve, Sierpinski Triangle, Weierstrass Function and the Fractal Tree. In addition, Mandelbrot Set and Julia Set are researched to give some details of images for Mandelbrot Set and the relationship between its shape and parameter in Julia Set, as they are important in fractal therapy.
Keywords Fractal system Fractal calculation Non-linear system
目次