其中 

 

若存在 ,使 则 称为方程组(2-1)的解[3].

下面是即将用到的雅克比矩阵

                         (2-3)

 牛顿法是求解如(2-1)这样的非线性方程组的最基本而且最重要的方法,这里将介绍几种经典解法,首先是牛顿法.

2.1 牛顿型迭代法

2.1.1 牛顿法简介

    牛顿法最初由艾萨克·牛顿于1736年在 Method of Fluxions 中发布 .而事实上此方法已经由Joseph Raphson于1690年在“Analysis Aequationum”中提出,与牛顿法相关的章节《流数法》在更早的1671年已经完成了[12].

对如式(2-1)的非线性方程组求解的牛顿法,首先将非线性映象 逐步线性化,迭代一次,获取一个线性方程,然后求其解,如上迭代法称为线性化方法.首先我们分析一维非线性方程,然后 由其推广到 维非线性方程组.

    设

                             (2-4)

其中 ,若 是方程(2-4)的根,x0是 的近似值,通过点 的线性函数为

 

其中 .若用 ,则(2-4)的根可用 的根近似,于是新的近似根 应为

 

           (2-5)

迭代程序(2-5)就是求方程(2-4)的线性化方法,它的几何意义就是通过点 做直线,将该直线与 轴的交点设为方程(2-4)根新的近似值,当 取不同的值,就可得到到不同的迭代法,例如取 ,就得到平行弦方法,如果取 就称为简化牛顿法,如果在点 处用切线近似曲线,把 的根记作 ,则得

                      (2-6)

这就是牛顿法,它相当于(2-5)中取  

    把解一维方程(2-4)的上述方法推广至n维就可以得到解方程组(2-1)的各种迭代法.假设 是方程(2-1)的一个数值解, 是 的近似值,通过点 可以定义仿射映象

 

                             (2-7)

其中 为非奇异 阶矩阵,明显可知 ,如果用线性方程组

 

的解 作为方程(2-1)的新近似值,即

                           (2-8)

这个过程即为解非线性方程组(2-1)的线性化迭代法,一般 等有关,如果 设定不同就可以获取不同的迭代法,其中最简单的方法就是对全部 都取 非奇异,于是由(2-8)得

                 (2-9)

它称为 维平行弦方法,它的几何意义就是:在 中 个超平面

 

与超平面 的交点就是 .其中 为 的 个坐标分量, .若取 ,则由(2-9)可得

            (2-10)

这个即为简化牛顿法,与一维时情况类似,如果在点 处用超切平面替代曲面,即以线性方程组 的解为方程组(2-1)新的近似解,则获得到第 次近似解

            (2-11)

这就是解方程组(2-1)的牛顿法.这里 就是 的Jacobi矩阵(2-3),它的几何意义就是利用 个超切平面

 

与超平面 的交点 作为超曲面 与超平面 交点 的新近似.牛顿法(2-11)每步计算 的逆,当 很大时运算是艰巨的,真正计算时可采纳下列方式

                (2-12)

上一篇:一些组合恒等式的推广
下一篇:浅谈数形结合在中学数学教育中的应用

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

凯勒流形的复结构与代数结构研究

可展曲面的判定构造及其应用

Dirichlet判别法与Abel判别法的探究

一维Schroedinger算子只有离散谱的条件

螺纹钢期货交易中几个影...

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

浅谈高校行政管理人员的...

压疮高危人群的标准化中...

浅论职工思想政治工作茬...

从政策角度谈黑龙江對俄...

酵母菌发酵生产天然香料...

AES算法GPU协处理下分组加...

提高教育质量,构建大學生...

基于Joomla平台的计算机学院网站设计与开发