VÞ cosðp=4Þ

(43)

experiments or to some type of mechanistic/heuristic analogy between fluid friction and mass  transfer。

where ‘‘h’’ is the corrugation inclination angle in radians measured from the vertical。 The adjustment for correlation inclination angle in Eq。 43 allows us to develop a single set of fitting coefficients for all inclination angles rather than develop- ing inpidual correlating expressions for each inclination angle。

The mass-transfer coefficient correlation for vapor flow

Churchill28 presented a detailed discussion of several of the gas-side mass-transfer correlations derived from classical hydrau- lic analogies。 One such analogy is that of Chilton and  Colburn29

Final expression for the hHETPi

jD ¼

ShV

1

f

1=3  ¼ 2 (48)

Substituting rearranged versions of Eqs。 31, 32, and 42 into Eq。 28 for hHETPi yields (for random packings  and metal gauze ‘‘X’’ style packings; a further adjustment for corrugation inclination angle appears in the general formula- tion for sheet metal structured packings, as discussed   above)

Gde

ReVScV

f ¼ FðReVÞ (49)

where ‘‘f’’ is the friction factor。 Although the correlation is at odds with some theoretical findings, it is reasonably accurate for flows in which no form drag is present。 The packings we are considering here—metal Pall rings, metal IMTP, and sheet

hHETPi ¼ 。 A B

metal structured packings with crimp geometries  similar

AM。qV。  。lV。  ðReX D E U

 

qL lL

L ÞðFrL ÞðWeLÞðReVÞad

MELLAPAK—have   open   structures;   therefore,   form drag

Cy

  Cx

44Þ

should be small。 Rather than using the Chilton–Colburn analogy in its ‘‘strong’’  form, we shall instead use a    ‘‘weak’’

× AVRemScn  cVDV  þ ALReb Scc cLDL ð

V      V L     L

We immediately see that the Eq。 44 for the hHETPi expressed in terms of independent expressions for ky, kx, and am (opposed to expressions for the combined quantities kyam and kxam) is not unique。 It is possible to factor out the front factor AL (for example) and define two new relative front factors for  ky  and am

Gde

form of Eq。  48

jD / JDðReVÞ (50)

For vapor flow through Pall rings, IMTP, and sheet metal structured packings, the dry friction factor is often found to be weakly dependent on the Reynolds number (often f ! ReV )。  Therefore,  we assume  that  the vapor-phase Sherwood number scales like

hHETPi ¼ 。 A B

上一篇:注塑模具中设计内部销设计英文文献和中文翻译
下一篇:机器视觉维护检测与跟踪系统英文文献和中文翻译

移动码头的泊位分配问题英文文献和中文翻译

纤维素增强的淀粉-明胶聚...

多极化港口系统的竞争力外文文献和中文翻译

阻尼减震平台的设计英文文献和中文翻译

超精密自由抛光的混合机...

旋转式伺服电机的柔性电...

过程约束优化数控机床的...

压疮高危人群的标准化中...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

浅论职工思想政治工作茬...

基于Joomla平台的计算机学院网站设计与开发

上海居民的社会参与研究

从政策角度谈黑龙江對俄...

浅谈高校行政管理人员的...

提高教育质量,构建大學生...

酵母菌发酵生产天然香料...