MATLAB的双音多频拨号系统的仿真 第2页

MATLAB的双音多频拨号系统的仿真 第2页
1 引言
    双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。
   DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。
在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用 表示,其中 , 。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表1所示。表中最后一列在电话中暂时未用。
               表1   双频拨号的频率分配
    列
行 1209Hz 1336Hz
 1477Hz 633Hz毕业论文http://www.751com.cn/  论文网http://www.lwfree.com/
697Hz    1 2 3 A
770Hz    4  5    6     B
852Hz    7    8    9 C
942Hz    *    0    #    D
    DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播放留言、语音信箱等。
 2 电话中的双音多频(DTMF)信号的产生与检测
2.1双音多频信号的产生
假设时间连续的 DTMF信号用 表示,式中 是按照表1选择的两个频率, 代表低频带中的一个频率, 代表高频带中的一个频率。显然采用数字方法产生DTMF信号,方便而且体积小。下面介绍采用数字方法产生DTMF信号。规定用8KHz对DTMF信号进行采样,采样后得到时域离散信号为
           
  形成上面序列的方法有两种,即计算法和查表法。用计算法求正弦波的序列值容易,但实际中要占用一些计算时间,影响运行速度。查表法是预先将正弦波的各序列值计算出来,寄存在存储器中,运行时只要按顺序和一定的速度取出便可。这种方法要占用一定的存储空间,但是速度快。
    因为采样频率是8000Hz,因此要求每125ms输出一个样本,得到的序列再送到D/A变换器和平滑滤波器,输出便是连续时间的DTMF信号。DTMF信号通过电话线路送到交换机。
2.2双音多频信号的检测
在接收端,要对收到的双音多频信号进行检测,检测两个正弦波的频率是多少,以判断所对应的十进制数字或者符号。显然这里仍然要用数字方法进行检测,因此要将收到的时间连续 DTMF信号经过A/D变换,变成数字信号进行检测。检测的方法有两种,一种是用一组滤波器提取所关心的频率,根据有输出信号的2个滤波器判断相应的数字或符号。另一种是用DFT(FFT)对双音多频信号进行频谱分析,由信号的幅度谱,判断信号的两个频率,最后确定相应的数字或符号。当检测的音频数目较少时,用滤波器组实现更合适。FFT是DFT的快速算法,但当DFT的变换区间较小时,FFT快速算法的效果并不明显,而且还要占用很多内存,因此不如直接用DFT合适。下面介绍Goertzel算法,这种算法的实质是直接计算DFT的一种线性滤波方法。这里略去Goertzel算法的介绍(请参考文献[19]),可以直接调用MATLAB信号处理工具箱中戈泽尔算法的函数Goertzel,计算N点DFT的几个感兴趣的频点的值。
3 检测DTMF信号的DFT参数选择
   用DFT检测模拟DTMF信号所含有的两个音频频率,是一个用DFT对模拟信号进行频谱分析的问题。根据第三章用DFT对模拟信号进行谱分析的理论,确定三个参数:(1)采样频率 ,(2)DFT的变换点数N,(3)需要对信号的观察时间的长度 。这三个参数不能随意选取,要根据对信号频谱分析的要求进行确定。这里对信号频谱分析也有三个要求:  (1)频率分辨率,(2)谱分析的频谱范围,(3)检测频率的准确性。
  3.1 频谱分析的分辨率
观察要检测的8个频率,相邻间隔最小的是第一和第二个频率,间隔是73Hz,要求DFT最少能够分辨相隔73Hz的两个频率,即要求 。DFT的分辨率和对信号的观察时间 有关,  。考虑到可靠性,留有富裕量,要求按键的时间大于40ms。
  3.2频谱分析的频率范围
    要检测的信号频率范围是697~1633Hz,但考虑到存在语音干扰,除了检测这8个频率外,还要检测它们的二次倍频的幅度大小,波形正常且干扰小的正弦波的二次倍频是很小的,如果发现二次谐波很大,则不能确定这是DTMF信号。这样频谱分析的频率范围为697~3266Hz。按照采样定理,最高频率不能超过折叠频率,即 ,由此要求最小的采样频率应为7.24KHz。因为数字电话总系统已经规定 =8KHz,因此对频谱分析范围的要求是一定满足的。按照 , =8KHz,算出对信号最少的采样点数为 。
 3.3检测频率的准确性
   这是一个用DFT检测正弦波频率是否准确的问题。序列的N点DFT是对序列频谱函数在0~ 区间的N点等间隔采样,如果是一个周期序列,截取周期序列的整数倍周期,进行DFT,其采样点刚好在周期信号的频率上,DFT的幅度最大处就是信号的准确频率。分析这些DTMF信号,不可能经过采样得到周期序列,因此存在检测频率的准确性问题。
  DFT的频率采样点频率为 (k=0,1,2,---,N-1),相应的模拟域采样点频率为 (k=0,1,2,---,N-1),希望选择一个合适的N,使用该公式算出的 能接近要检测的频率,或者用8个频率中的任一个频率 代入公式 中时,得到的k值最接近整数值,这样虽然用幅度最大点检测的频率有误差,但可以准确判断所对应的DTMF频率,即可以准确判断所对应的数字或符号。经过分析研究认为N=205是最好的。按照 =8KHz,N=205,算出8个频率及其二次谐波对应k值,和k取整数时的频率误差见表2。
                      表2 
8个基频
Hz 最近的整数k值 DFT的
k值 绝对误差 二次谐波
Hz 对应的
k值 最近的
整数k值 绝对误差
697 17.861 18 0.139 1394 35.024 35 0.024
  770 19.531 20 0.269 1540 38.692 39 0.308
  852 21.833 22 0.167 1704 42.813 43 0.187
  941 24.113 24 0.113 1882 47.285 47 0.285
 1209 30.981 31 0.019 2418 60.752 61 0.248
 1336 34.235 34 0.235 2672 67.134 67 0.134
 1477 37.848 38 0.152 2954 74.219 74 0.219
 1633 41.846 42 0.154 3266 82.058 82 0.058
通过以上分析,确定 =8KHz,N=205,

上一页  [1] [2] [3] [4] [5] [6] 下一页

Copyright © 2007-2012 www.chuibin.com 六维论文网 版权所有