C++人脸识别系统(论文+算法+英文文献翻译+源代码) 第2页
以中心为主且适合有效率层级目标检测的评估
概述
我们描述一个进行目标识别的级联方法。该方法应用了“以中心为特色”的评估中一种新颖结构,该评估方法通过多级窗口来重用面部特征评估。 我们通过以下几种简化将评估的费用减至最小: (1) 局限照明标准化,(2) 分离特征作为一附加模式和(3)离散型的特征。 该方法也结合了一种独特的特征表现方法。在该层叠方法的初期使用简单快捷的特征评估,后期则使用更复杂的具有判别能力的特征。 尤其,我们推荐基于稀疏编码和过滤器回应之间的顺序关系的特征。层叠且以面部为主的评估与越来越具复杂性的特征结合起来可以提高计算效率和精确度。 我们对在十个目标上进行的实验情况做一描述,实验对象包括面部以及汽车。 这些结果包括在和对汽车识别的UIUC图片数据库的同等错误率下对97%的目标进行了识别。
1 引言
进行目标识别的难题之一是应付目标大小和方位的多样化。一个目标可以以任意大小出现在一副画的任何地方,这里有两个解决该问题的一般方法。“不变式”方法试图使用特征几何量[6][7][25][28]或光度测定道具[4][15][22]的过滤器,该方法的最关键之处是找出具有不变性和具有判别力的特征,尤其是对象面部之类的自然物体。另一个方面,“穷举搜索“法包括在只有忍受目标位置和大小的有界变差的情况下建立对目标和”非目标“进行区分的分类器。该方法通过
一副图中的方位和大小进行详尽的扫描,以此来找出目标。图1图解了该方法,分离器对图片中的所有“窗口”进行评估。该方法的缺点是象这样详尽式的搜索很耗时。
Figure 1。目标检测的详细搜索
减少详细搜索计算成本的一个方法就是如图2所示那样来将分离过程细分成子过程,每一个子分类阶段对是否拒绝输入,并将其分类到非目标中去或继续用下一个子分类阶段对其进行评估。最后被筛选出来的就被归类到所属的目标中 。该策略是以最少的计算量来分离出大量的非目标窗口。
Figure 2 子分类的层叠
使用类似层叠方法的思想已经沿用了数十年,而且于70,80年代,在自动目标识别技术上广泛使用[3]。近来大量的相关技术已经应用于面部检测,包括[2][9][10][14][17][19][21][23][24][26]。尤其,Viola和Jones[24]和他们在研究方法上将层叠和基于整体图象的有利计算的特征相结合,并在各方面都取得了进展,使面部检测的效率提高。
类似Viola和Jones[24]的大部分层叠法应用了我们所介绍过的“基于窗口”的评估法。这些方法对各个窗口进行亮度修正和特征评估。在该论文中,我们介绍另一个可供选择的“以中心为特点”评估方法,该方法在相互重叠的窗口中重用特征评估。象一个子分类此时可以在不用花费特征评估的成本的情况下使用更多的信息。在一个层叠中的初期,一个子类通常可以将层叠窗口的初始数量减少99%以上,在基于少许合理假设下,我们将说明如何以计算的效率来
我们使用最初基于面部的子分类阶段作为目标识别完整系统中的一部分,层叠法的最初阶段使用简单快捷的特征,而在后面阶段将使用较之复杂,且有判别力的特征。实际上,我们推荐基于稀疏代码和过滤器回应之间顺序关系的新颖特征。最后,我们将讲述如何利用()[20],我们将论证计算的效率和精确度,并且展示对含有面部和汽车之类十个物体的检测方法的一般性。
2 基于中心的评估
大部分层叠法基于分类运算法则,并应用“基于窗口“评估方法,在这类方法中所有的评估都和分类窗口有关。这可用如下公式表示:
其中 r[k]代表长方形窗口在位置k的中心且该窗口由函数w[k]从输入的图中选择出来 ,I[k]。I(。)在该窗口区域内进行光度修正计算。
每个窗口的特征值各自由下列式子所式:
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ... 下一页 >>