C++简单几何图形的识别和编辑系统设计+PPT演示 第2页

C++简单几何图形的识别和编辑系统设计+PPT演示 第2页
第一章 概述
第一节 引言
计算机技术的发展,使人类社会进入了信息化和自动化,计算机智能识别也随着计算机的发展得到了迅速的发展。特别是图形图像的计算机处理技术更是有了前所未有的进步和应用。计算机识别也逐渐的从图形图像处理的大环境下分离出来作为一门新的高科技研究领域出现。图形图像的识别涉及到的学科很多,包括数字信号处理、工程数学、信息论、运筹学、等,它与计算机、自动化、生物学、关学、视觉心里和生理学、人工智能、智能信息处理等众多领域交叉、综合集成,有广泛的应用。
本论文实现的是基础的图形识别,bmp图像文件格式中对图形的矢量化。识别基本的图元直线和圆。直线和圆是二值图像中最基本的组成元素,也是最常见的图形元素。在工程图的数字化识别中有很大的应用。
关于理想情况的几点说明:
1. 所识别的bmp图像文件是经过处理的,没有“噪音”等,在本论文中直接采用的是用Windows中的画图软件画出的图像。
2. 本论文中图像中的图元都是单一的线性,即线宽是一个象素的情况。

第二节 在工程图的识别中常用的方法
图形的识别最主要的是图形特征的提取,在这个阶段,常用的方法是全局特征方法(包括:不变距,自回归模型、傅立叶描述符、霍夫变换等),全局特征的特征提取方法是理论比较完善的,计算过程比较清楚。针对不同的特征提取处理,采用相对应的模式匹配方法来将图形分类,模式识别迄今已有很多方法,有模板匹配、统计模式识别、句法模式识别、模糊识别和神经网络识别等。
在二值图像的处理中,人们常用的数据结果有游程编码-考虑了扫描行上相邻象素间的相关性;行相邻图法(Line Adjeceney Gragh),是由Pavlidis提出的一种二值图的数据结构,LAG还考虑了相邻行黑游程之间的相邻关系,遍历时很方便;BAG(Bloek Adjeceney Gragh)是由余斌提出的,它是相邻图LAG在两个方向上的推广。在本论文中就是利用了LAG的数据结构思想与c++ builder的数据结构相结合的方法即:用下一个象素点是与链表头相邻还是和尾相邻来描述其相邻的关系。
本论文中对交点的处理。目前对交点的处理有下面几类算法:
1. 基于网格算法,该算法是通过网格加大搜索步长来跳过交点。
2. 基于图段合并的算法,是根据交点处行程段的连通性,以交点为界将图线分割成图段,记录各段之间的连接及从属关系,然后连接或延长各分支图段,然后得到整条图线。
在本论文中采用了第二种方法,基于图段合并的算法。

当然现下有很多更好的算法和数据结构,但是大部分是针对具体的结构或者研究方向不具有一般性,所以本论文的实现用了上述的数据结构和方法。
第二章 论文的工作基础和工作环境
第一节 数字图像处理技术
将客观世界实体或图片等通过不同的量化(数字化)手段送入计算机,由计算机按使用要求进行图像的平滑、增强、复原、分割、重建、编码、存储、传输等种种不同的处理,需要时把加工处理后的图像重新输出,这个过程称为图像处理。因此,图像处理的含义是用计算机对图像进行加工处理以得到某种预期的效果,它本质上是一种二维数字信号处理技术。
1.  图像处理的基本内容
图像处理的基本内容可以归结为:
1. 对图像进行增强或修改。
以改变或强调图像信息的某些特点(增强有用信息,无用信息),改善图像的视觉质量;
2. 描述图像的特征并进行特征抽取和分析。
例如提取图像的纹理特征、频谱特征、边界特征和颜色特征等;对像素用某个标准衡量并进行分类比较,将抽取的特征归结为一定的模式,这属于模式识别的范围;
3. 图像的重建(Reconstruction)。
对图像的某些部分合并或进行重新组织,这种技术是从N—1维的信息用某种算法得到N维的图像,例如计算机视觉就是这样的一种技术。
2.  主要的图像处理技术
2.1  图像的增强和恢复
图像增强所追求的目标是改善图像的视觉质量,符合人们的主观要求,它不追究图像客观质量的降低原因。图像的视觉质量是因人而异的,其质量的高低和好坏受观看者的心理、爱好和文化素质等因素的影响。图像的恢复则致力于探索图像质量降低的原因,并尽可能消除图像质量的降低,恢复图像的本来面目。
2.2  图像的压缩编码
彩色数字图像通常是由三个二维数组组成的,其信息量相当大,这给图像的传输、处理、存储和显示等带来很大的负担。但问题的另一方面是图像中又往往存在很多冗余信息,在传输和存储时可以对数字图像进行一定方式的编码,删除图像中的冗余信息,以提高图像传输和存储的效率。
2.3  图像重建
在医学和工程应用中,利用超声波、x射线等技术取得物体的多幅来自不同角度的投影图,通过计算可得到物钵内部的图像,这种技术称为投影重建,例如CT就是图像重建的一个应用。
2.4  图像的分割和描述
计算机按照一定的客观测度(例如灰度、颜色和几何性质等)将图像中包含的物体和区域从图像中区分出来,称为图像的分割。用适当的数学语言来表示被分割出来的物体或区域的结构和统计特性,或用数学语言表示区域问的关系,称为描述。图像经分别和描述后,可较为容易地分类和识别。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] 下一页

Copyright © 2007-2012 www.chuibin.com 六维论文网 版权所有