开关电源电路图及原理设计 第5页

开关电源电路图及原理设计 第5页
第三章 集成开关稳压电源关键外围器件的选择 
在研制开关电源时,不仅要设计好电路,还要必须能正确选择器件。单片开关电源的外围元件大致可分为三大类:第一类是通用元器件,包括电阻、电容、整流桥或整流管、稳压管。第二类是特种半导体器件,主要有TL431型可调试精密并联稳压器、EMI滤波器、光耦、瞬态电压抑制器、超快恢复二极管、肖特基二极管、熔断器、自恢复容丝。第三类为磁性材料,如高频变压器磁心、电磁线、磁珠等等。
一 TL431型可调式精密并联稳压器
TL431是由美国德州仪器公司(TI)和摩托罗拉公司生产的2.50~36V可调式精密并联稳压器。其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中,此外TL431还能构成电压比较器,电源电压监视器,延时电路,精密恒流源等。目前在单片精密开关电源中,普遍用它来构成外部误差放大器,再与线性光耦合器组成隔离式光耦反馈电路。
TL431系列产品包括TL431C.TL431AC.TL431AI.TL431M.TL431Y,共6种型号。它属于三端可调试器件,利用两只外部电阻可设定2.50-36V范围内的任何基准电压值。TL431的动态阻抗低,其典型值为0.2欧。阴极工作电压Uka的允许范围是2.50~36V,阴极工作电流Ika=1~100mA。TL431大多采用DIP-8或TO-92的封装形式,管脚排列分别如图2-13所示。图中A为阳极,使用时需接地。K为阴极,需经限流电阻接电源。Uref是输出电压Uo的设定端,外接电阻分压器。NC为空脚。TL431的等效电路见图3-13c,,主要包括4部分:①.
                           图3-13 TL431的管脚排列及等效电路
                            a DIP-8封装       b 等效电路
误差放大器A,其同向输入端接从电阻分压器上得到的取样电压,反向输入端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF端常态下应为2.5V,因此称基准端:②.内部2.5v(准确值为2.495V)基准电压源Uref;③.NPN型晶体管VT,它在电路中起到调节负载电流的作用;④.保护二极管VD,可防止因K-A间电源级性接反而损坏芯片。TL431的电路符号和基本接线如图2-14所示。它相当于一只可调试齐纳稳压管,输出电压由外部精密电阻R1和R2来设定,有公式
Uo=Uka=(1+R1/R2)Uref                                3-1
R3是Ika的限流电阻。TL431的稳压原理可分析如下:当由于某种原因使Uo升高时,取样电压Uref也随之升高,使UREF>Uref ,比较器输出高电平,令VT导通,Uo下降。反之,Uo下降导致UREF下降UREF<Uref进而比较器再次翻转,输出变成低电平导致VT截至输出电压Uo上升。这样循环下去,从动态平衡的角度来看,就迫使Uo趋于稳定,达到了稳压的目的,并且UREF=Uref.
                          图3-14 TL431的电路符号与基本接线
 a 电路符号  b 基本接线
  TL431可广泛应用于单片开关电源中,作为外部误差放大器,构成光耦反馈式电路。其工作原理是当输出电压发生波动是,经电阻分压后得到的取样电压就与TL431中的2.5V带隙基准电压进行比较,在阴极上形成误差电压,使发光二极管的工作电流If发生变化,再通过光耦去改变控制端电流Ic的大小,调节TOPSwitch的输出占空比,使Uo 不变,达到稳压的目的。
二 线性光耦合器 
 光耦合器(optical coupler)。它是以光为媒介来传输电信号的器件。通常是把发光器与受光器封装在同一管壳内。当输入端加信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电-光-电”转换。普通光耦只能传输数字或开关信号,不适合传输模拟信号。线性光耦是一种新型光电隔离器件,应用领域非常广。
   线性光耦合器与普通光耦的重要区别反映在电流传输比(CTR)上。(CTR)是光耦的重要参数,通常用直流传输比来表示。当输出电压保持恒定时,它等于直流输出电流Ic与直流输入电流If的百分比。有公式
                  CRT=Ic/If*100%                             3-2
 采用一只光敏晶体管的光耦合器,CRT的范围大多为20%-300%(例如4N35),而PC817则为80%-160%。达林顿光耦(如4N30)可达100%-5000%。这表明欲获得同样的输出电流,后者只需要较小的输入电流。因此CTR参数与晶体管的hFE有某种相似之处。普通光耦的CTR-If特性曲线为非线性,在If较小的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器CTR-If特性曲线具有良好的线性度,特别是在传输小信号是,其交流电流传输比接近于直流传输比,因此它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特征。
三 电磁干扰滤波器
电磁干扰滤波器亦称EMI滤波器,它能有效的抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源测控系统等领域。电网噪声是电磁干扰的一种,它属于射频干扰(RFI),其传导噪声的频谱大致为10KHz-30MHz,最高可达150MHz。根据传播方向的不同,电网噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。这表明它属于双向干扰信号,电子设备既是噪声赶的对象,又是一个噪声源。若从形成特点来看,噪声干扰分串模干扰和共模干扰。串模干扰是两条电源之间(或线对线)的噪声。共模干扰则是两条电源线对大地(或线对地)的噪声。因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须上双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,所以一台具有良好电磁兼容性的电子设备是完全可以避免串、共模干扰的。此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
 为减小体积和降低成本,单片开关电源一般采用简易式单级EMI滤波器,主要包括共模扼流圈L和滤波电容。典型电路如图2-15所示。以图2-15c为例,L.C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。当出现共模干扰时,由于L中两个线圈的磁通方向相同经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。它的两个线圈分别绕在低损耗、高磁导率的铁氧体磁环上。R为泻放电阻,可将C3上的电荷释放掉,避免影响滤波性能;断电后还能是进线端L.N不带电,保证使用的安全。EMI滤波器能有效的抑制单片开关电源的电磁干扰。图2-16中曲线a为不加EMI滤波器时开关电源上0.15-30MHz传导噪声的波形(即电磁干扰峰值包络线),曲线c是插入如图3-15d所示EMI滤波器后的波形,它能将电磁干扰衰减50-70dBuV。显然, 这种EMI滤波器的效果更佳.
                     图3-15 单片开关电源常用的4种EMI滤波器
插入损耗(AdB)是EMI滤波器的重要参数。它是评价电磁干扰滤波器性能优劣的主要指标,设电磁干扰滤波器插入前后传输到负载上的噪声电压分别为U1.U2有
AdB=201g*(U1/U2)                              3-3 
插入损耗用dB来表示,分贝值愈大,说明抑制噪声的能力越强。测量插入损耗的电路如图3-17所示。e 是噪声信号发生器,Zi是信号源的内部阻抗,ZL是负载阻抗,一般取50欧。噪声频率可选10KHZ-30MHz。首先要在不同频率下分别测出插入EMI滤波器前后,负载两端的噪声压降U1.U2,再代入上式(3-13)中计算出每个频率点的AdB值,最后绘出插入损耗的曲线。需要指出,上述测试方法比较烦琐,每次都要拆装EMI滤波器。为此可采用电子开关对其进行快速切换。
                                        图3-16 加EMI滤波器前 后干扰波形的比较

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页

Copyright © 2007-2012 www.chuibin.com 六维论文网 版权所有